The BV quantisation in NCG: the case of finite spectral triple
The quantisation of the spectral action for spectral triples remains a largely open problem. Even within a perturbative framework, serious challenges arise when in the presence of non-abelian gauge symmetries. This is precisely where the Batalin–Vilkovisky (BV) formalism comes into play: a powerful tool specifically designed to handle the perturbative quantisation of gauge theories. The central question I will address is whether it is possible to develop a BV formalism entirely within the framework of noncommutative geometry (NCG). After a brief introduction to the key ideas behind BV quantisation, I will report on recent progress toward this goal, showing that the BV formalism can be fully formulated within the language of NCG in the case of finite spectral triples.