Appears in collection : 2023 - T3 - WS3 - Computer algebra for functional equations in combinatorics and physics

The appearance of a stretched exponential term $\mu^{n^{s}}$ with $\mu>0$ and sigma in $(0,1)$ in a counting sequence of nonnegative integers is not common, although more and more examples are appearing lately. Proving that a sequence has a stretched exponential is often quite difficult. This is in part because such a sequence cannot be "very nice": its generating function cannot be algebraic, and it can only be D-finite if it has an irregular singularity. Previously, the saddle-point method was the only generic method for proving such a phenomenon, but it requires detailed information about the generating function. Recently, together with Andrew Elvey Price and Wenjie Fang, we have developed a new method at the level of recurrences to prove stretched exponentials. I will introduce the basics of this method and show how it can be extended to other problems. Then I will summarize recent progress (new bijections, limit laws, etc.) in the study of compacted trees, a subclass of directed acyclic graphs. Finally, I will give an outlook on how these results now allow an in-depth study of limit shapes and open many new avenues for further research.

Information about the video

Citation data

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback