00:00:00 / 00:00:00

Steady states and dynamics of the aggregation-diffusion equation - lecture 2

By Yao Yao

Appears in collection : Research School - Jean Morlet Chair - Frontiers in Interacting Particle Systems, Aggregation-Diffusion Equations & Collective Behavior / Ecole - Chaire Jean Morlet - Frontières dans les équations de systèmes de particules en interaction. Equations d'agrégation-diffusion et comportement collectif

The aggregation-diffusion equation is a nonlocal PDE that arises in the collective motion of cells. Mathematically, it is driven by two competing effects: local repulsion modelled by nonlinear diffusion, and long-range attraction modelled by nonlocal interaction. In this course, I will discuss several qualitative properties of its steady states and dynamical solutions. Using continuous Steiner symmetrization techniques, we show that all steady states are radially symmetric up to a translation. (joint with Carrillo, Hittmeir and Volzone). Once the symmetry is known, we further investigate whether steady states are unique within the radial class, and show that for a given mass, the uniqueness/non-uniqueness of steady states is determined by the power of the degenerate diffusion, with the critical power being m = 2. (joint with Delgadino and Yan). I'll also discuss some properties on the long-time behavior of aggregation-diffusion equation with linear diffusion (joint with Carrillo, Gomez-Castro and Zeng), and global-wellposedness if Keller-Segel equation when coupled with an active advection term (joint with Hu and Kiselev).

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20194603
  • Cite this video Yao, Yao (24/06/2024). Steady states and dynamics of the aggregation-diffusion equation - lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20194603
  • URL https://dx.doi.org/10.24350/CIRM.V.20194603

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback