A $\lambda$-adic family of Funke-Millson cycles and a $\lambda$-adic Funke-Millson lift
By Paul Kiefer
Modularity of special cycles in orthogonal and unitary Shimura varieties
By Salim Tayou
Appears in collections : Diophantine geometry / Géométrie diophantienne, Exposés de recherche
I will explain some new connections between the $abc$ conjecture and modular forms. In particular, I will outline a proof of a new unconditional estimate for the $abc$ conjecture, which lies beyond the existing techniques in this context. The proof involves a number of tools such as Shimura curves, CM points, analytic number theory, and Arakelov geometry. It also requires some intermediate results of independent interest, such as bounds for the Manin constant beyond the semi-stable case. If time permits, I will also explain some results towards Szpiro's conjecture over totally real number fields which are compatible with the discriminant term appearing in Vojta's conjecture for algebraic points of bounded degree.