00:00:00 / 00:00:00

Periodic pencils of flat connections and their $p$-curvature

By Pavel Etingof

Appears in collection : Mathematics on the Crossroad of Centuries - A Conference in Honor of Maxim Kontsevich's 60th Birthday

A periodic pencil of flat connections on a smooth algebraic variety $X$ is a linear family of flat connections $\nabla(s_1,...,s_n)=d-\sum_{i=1}^r\sum_{j=1}^ns_jB_{ij}dx_i$, where $\lbrace x_i\rbrace$ are local coordinates on $X$ and $B_{ij}: X\to {\rm Mat}_N$ are matrix-valued regular functions. A pencil is periodic if it is generically invariant under the shifts $s_j\mapsto s_j+1$ up to isomorphism. I will explain that periodic pencils have many remarkable properties, and there are many interesting examples of them, e.g. Knizhnik-Zamolodchikov, Dunkl, Casimir connections and equivariant quantum connections for conical symplectic resolutions with finitely many torus fixed points. I will also explain that in characteristic $p$, the $p$-curvature operators $\lbrace C_i,1\le i\le r\rbrace$ of a periodic pencil $\nabla$ are isospectral to the commuting endomorphisms $C_i^*:=\sum_{j=1}^n (s_j-s_j^p)B_{ij}^{(1)}$, where $B_{ij}^{(1)}$ is the Frobenius twist of $B_{ij}$. This allows us to compute the eigenvalues of the $p$-curvature for the above examples, and also to show that a periodic pencil of connections always has regular singularites. This is joint work with Alexander Varchenko.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback