Appears in collection : Cohomological Methods in the Theory of Algebraic Groups
A variety X is stably rational if a product of X and some projective space is rational. There exists examples of stably rational non rational complex varieties. In this talk we will discuss recent series of examples of varieties, which are not stably rational and not even retract rational. The proofs involve studying the properties of Chow groups of zero-cycles and the diagonal decomposition. As concrete examples, we will discuss some quartic double solids (C. Voisin), quartic threefolds (a joint work with Colliot-Thélène), some hypersurfaces (Totaro) and others.