00:00:00 / 00:00:00

Motivic invariants via non-archimedean geometry - Lecture 2

By Arthur Forey

Appears in collection : Logarithmic and non-archimedean methods in Singularity Theory - Thematic Month Week 1 / Méthodes logarithmiques et non-archimédiennes en théorie des singularités - Mois thématique semaine 1

These lectures will revolve around applications of Hrushovski and Kazhdan's theory of motivic integration. It associates motivic invariants to semi-algebraic sets in algebraically closed valued fields. Following the work of Hrushovski and Loeser, and in collaboration with Yin, we shall see that when applied to the non-archimedean Milnor fiber, the motivic volumes recover some classical invariants of the Milnor fiber. Finally, we will see how these methods can be applied to a singularity arising as the quotient of a smooth variety by a linear group. When the group is finite, the orbifold formula of Batyrev and Denef–Loeser provides a motivic version of the McKay correspondence. In collaboration with Loeser and Wyss, we establish a similar formula for a general linear group.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20293103
  • Cite this video Forey, Arthur (28/01/2025). Motivic invariants via non-archimedean geometry - Lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20293103
  • URL https://dx.doi.org/10.24350/CIRM.V.20293103

Domain(s)

Bibliography

  • DENEF, Jan et LOESER, François. Motivic integration, quotient singularities and the McKay correspondence. Compositio mathematica, 2002, vol. 131, p. 267-290. - https://doi.org/10.1023/A:1015565912485
  • FOREY, Arthur et YIN, Yimu. Bounded integral and motivic Milnor fiber. arXiv preprint arXiv:1910.12764, 2019. - https://doi.org/10.48550/arXiv.1910.12764
  • HRUSHOVSKI, Ehud et KAZHDAN, David. Integration in valued fields. In : Algebraic Geometry and Number Theory: In Honor of Vladimir Drinfeld's 50th Birthday. Boston, MA : Birkhäuser Boston, 2006. p. 261-405. - https://doi.org/10.1007/978-0-8176-4532-8_4
  • HRUSHOVSKI, Ehud et LOESER, François. Monodromy and the Lefschetz fixed point formula. Ann. Sci. Éc. Norm. Supér.(4), 2015, vol. 48, no 2, p. 313-349.. - https://doi.org/10.24033/asens.2246
  • GROECHENIG, Michael, WYSS, Dimitri, et ZIEGLER, Paul. Twisted points of quotient stacks, integration and BPS-invariants. arXiv preprint arXiv:2409.17358, 2024. - https://doi.org/10.48550/arXiv.2409.17358

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback