00:00:00 / 00:00:00

Mathematical topics around fractional quantization - lecture 1

By Nicolas Rougerie

Appears in collection : Du quantique au classique / From Quantum to Classical

The 1983 discovery of the fractional quantum Hall effect marks a milestone in condensed matter physics: systems of “ordinary particles at ordinary energies” displayed highly exotic effects, most notably fractional quantum numbers. It was later recognized that this was due to emergent quasi-particles carrying a fraction of the charge of an electron. It was also conjectured that these quasi-particles had fractional statistics, i.e. a behavior interpolating between that of bosons and fermions, the only two types of fundamental particles. These lectures will be an introduction to the basic physics of the fractional quantum Hall effect, with an emphasis on the challenges to rigorous many-body quantum mechanics emerging thereof. Some progress has been made on some of these, but lots remains to be done, and open problems will be mentioned.

After the lectures a few references regarding the spectrum of the magnetic Schrödinger operator were suggested to me. See the bibiography below.

Thanks to Alix Deleporte, Frédéric Faure, Stéphane Nonnenmacher and others for discussions relative to the magnetic Weyl law.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19527803
  • Cite this video Rougerie, Nicolas (24/04/2019). Mathematical topics around fractional quantization - lecture 1. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19527803
  • URL https://dx.doi.org/10.24350/CIRM.V.19527803

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback