00:00:00 / 00:00:00

Appears in collection : Les probabilités de demain 2016

Synaptic microdomains are underlying fundamental and yet not completely understood functions, such as learning and memory, breathing, sleeping, and many more. Motivated by understanding and analyzing these neuronal structures, we built a model to study vesicular release at synapses. As a first step, we computed the mean time for a Brownian particle to arrive at a narrow opening defined as the small cylinder joining two tangent spheres. The method relies on Möbius conformal transformation applied to the Laplace equation. We also estimated, when the particle starts inside a boundary layer near the hole, the splitting probability to reach the hole before leaving the boundary layer, which is also expressed using a mixed boundary-value Laplace equation. Using these results, we developed model equations and their corresponding stochastic simulations to study vesicular release at neuronal synapses, taking into account their specific geometry.

Information about the video

  • Date of recording 17/05/2016
  • Date of publication 22/05/2016
  • Institution IHES
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback