00:00:00 / 00:00:00

Kolyvagin’s conjecture and Iwasawa theory

By Giada Grossi

Appears in collection : A Conference in Arithmetic Algebraic Geometry in Memory of Jan Nekovář

Let E be a rational elliptic curve and p be an odd prime of good ordinary reduction for E. In 1991 Kolyvagin conjectured that the system of cohomology classes derived from Heegner points on the p-adic Tate module of E over an imaginary quadratic field K is non-trivial. I will talk about joint work with A.Burungale, F.Castella, and C.Skinner, where we prove Kolyvagin's conjecture in the cases where an anticyclotomic Iwasawa Main Conjecture for E/K is known. Moreover, our methods also yield a proof of a refinement of Kolyvagin's conjecture expressing the divisibility index of the Heegner point Kolyvagin system in terms of the Tamagawa numbers of E. One of the proof’s key ingredients, on which I will focus during the talk, is a refinement of the Kolyvagin system argument for (anticyclotomic) twists of E studied by Jan Nekovář.

Information about the video


Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback