$(k, a)$-generalized Fourier transform with negative $a$

By Tatsuro Hikawa

Appears in collection : 2025 - T1 - WS1 - Intertwining operators and geometry

The $(k, a)$-generalized Fourier transform $\mathscr{F}_{k, a}$ introduced by Ben Saïd--Kobayashi--Ørsted is a deformation family of the classical Fourier transform with a Dunkl parameter $k$ and a parameter $a > 0$ that interpolates minimal representations of two different simple Lie groups. In this session, we will talk about some new results when $a$ is not positive. As a main result, we find a unitary transform that intertwines the known case $a > 0$ and the new case $a > 0$.

Information about the video

Citation data

  • DOI 10.57987/IHP.2025.T1.WS1.017
  • Cite this video Hikawa, Tatsuro (23/01/2025). $(k, a)$-generalized Fourier transform with negative $a$. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T1.WS1.017
  • URL https://dx.doi.org/10.57987/IHP.2025.T1.WS1.017

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback