00:00:00 / 00:00:00

Hodge theory and syzygies of the Jacobian ideal

By Alexandru Dimca

Appears in collections : Local and global invariants of singularities / Invariants locaux et globaux des singularités, Exposés de recherche

Let $f$ be a homogeneous polynomial, defining a principal Zariski open set $D(f)$ in some complex projective space $\mathbb{P}^n$ and a Milnor fiber $F(f)$ in the affine space $\mathbb{C}^{n+1}$. Let$f_0, . . . , f_n$ denote the partial derivatives of $f$ with respect to $x_0, . . . , x_n$ and consider syzygies $a_0f_0 + a_1f1 + a_nf_n = 0$, where $a_j$ are homogeneous polynomials of the same degree $k$. Using the mixed Hodge structure on $D(f)$ and $F(f)$, one can obtain information on the possible values of $k$.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18707503
  • Cite this video Dimca, Alexandru (24/02/2015). Hodge theory and syzygies of the Jacobian ideal. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18707503
  • URL https://dx.doi.org/10.24350/CIRM.V.18707503

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback