00:00:00 / 00:00:00

Geometry, topology and discrete symmetries revealed by deep neural networks

By Maarten de Hoop

Appears in collection : A Multiscale tour of Harmonic Analysis and Machine Learning - To Celebrate Stéphane Mallat's 60th birthday

A natural question at the intersection of universality efforts and manifold learning is the following: What kinds of architecture are universal approximators of maps between manifolds that are topologically interesting? A (low-dimensional) manifold hypothesis has been underlying the study of inverse problems ensuring Lipschitz stability, implying a like-wise hypothesis for data. This is used, for example, in inference through flows. By exploiting the topological parallels between locally bilipschitz maps, covering spaces, and local homeomorphisms, we find that a novel network of the form p o E, where E is an injective flow and p a coordinate projection, is a universal approximator of local diffeomorphisms between compact smooth (sub)manifolds embedded in Euclidean spaces. We show that the network allows for the computation of multi-valued inversion and that our analysis holds in the interesting case when the target map between manifolds changes topology and its degree is a priori not known. We also show that the network can be used, for example, in supervised problems for recovering the group action of a group invariant map if the group is finite, and in unsupervised problems by informing the choice of topologically expressive starting spaces in the generative case.

Information about the video

  • Date of recording 19/04/2023
  • Date of publication 26/04/2023
  • Institution IHES
  • Language English
  • Audience Researchers
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback