00:00:00 / 00:00:00

From gas giant planets to the spectral theory of subelliptic Laplacians

By Emmanuel Trélat

Appears in collection : Frontiers in Sub-Riemannian Geometry / Aux frontières de la géométrie sous-riemannienne

This is a work with Yves Colin de Verdière, Charlotte Dietze and Maarten De Hoop, motivated by recent works by M. De Hoop on inverse problems for sound wave propagation in gas giant planets. On such planets, the speed of sound is isotropic and tends to zero at the surface. Geometrically, this corresponds to a Riemannian manifold with a boundary whose metric blows up near the boundary. With appropriate variable changes, we can reduce the study of the Laplacian?Beltrami to that of a kind of sub-Riemannian Laplacian. In this talk, I will explain how to approach the spectral analysis of such operators, and in particular how to calculate WeylÕs law.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20272503
  • Cite this video Trélat, Emmanuel (28/11/2024). From gas giant planets to the spectral theory of subelliptic Laplacians. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20272503
  • URL https://dx.doi.org/10.24350/CIRM.V.20272503

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback