

Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 1
By Barbara Schapira


Ergodic theory of the geodesic flow of hyperbolic surfaces - Lecture 2
By Barbara Schapira
Appears in collection : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
There are various classical and more recent decomposition results in mapping class group theory, geometric group theory, and complex dynamics (which include celebrated results by Bill Thurston). We will discuss several natural decompositions that arise in the study of rational maps, such as Pilgrim's canonical decomposition and Levy decomposition (by Bartholdi and Dudko). I will also introduce a new decomposition of rational maps based on the topology of their Julia sets (obtained jointly with Dima Dudko and Dierk Schleicher). At the end of the talk, we will briefly consider connections of this novel decomposition to geometric group theory and self-similar groups.