

Extremal eigenvectors, the spectral action, and the zeta spectral triple
By Alain Connes
![[1237] Moments de fonctions et $L$ stabilité homologique](/media/cache/video_light/uploads/video/Bourbaki.png)

[1237] Moments de fonctions et $L$ stabilité homologique
By Javier Fresán
Appears in collection : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Let $K$ be a number field, $\alpha _1,...,\alpha _t \in K$ and $G$ a finite abelian group. We explain how to construct explicitly a normal extension $L$ of $K$ with Galois group $G$, such that all of the elements $\alpha_{i}$ are norms of elements of $L$. The construction is based on class field theory and a recent formulation of Tate’s criterion for the validity of the Hasse norm principle. This is joint work with Rodolphe Richard (UCL).