A $\lambda$-adic family of Funke-Millson cycles and a $\lambda$-adic Funke-Millson lift
By Paul Kiefer
Modularity of special cycles in orthogonal and unitary Shimura varieties
By Salim Tayou
Appears in collection : Diophantine approximation and transcendence 2014 / Approximation diophantienne et transcendance 2014
An interpolation estimate is a sufficient condition for the evaluation map to be surjective; it is dual to a multiplicity estimate, which deals with injectivity. Masser's first interpolation estimate on commutative algebraic groups can be generalized, and made essentially as precise as the best known multiplicity estimates in this setting. As an application, we prove a result that connects interpolation and multiplicity estimates. This is a joint work with M. Nakamaye.