00:00:00 / 00:00:00

In these lectures I will focus on the Riemann-Roch theorem in Arakelov geometry, in the specific context of some simple Shimura varieties. For suitable data, the cohomological part of the theorem affords an interpretation in terms of both holomorphic and non-holomorphic modular forms. The formula relates these to arithmetic intersection numbers, that can sometimes be evaluated through variants of the first Kroenecker limit formula. I will first explain these facts, and then show how the Jacquet-Langlands correspondence allows to relate arithmetic intersection numbers for different Shimura varieties, whose associated groups are closely related.

Information about the video

  • Date of recording 28/06/2017
  • Date of publication 18/02/2026
  • Institution Institut Fourier
  • Language English
  • Format MP4

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback