00:00:00 / 00:00:00

Artificial intelligence, data assimilation, and data-driven surrogate models for the climate

By Marc Bocquet

Appears in collection : School/Workshop: Energy, mathematics, and theoretical challenges

Artificial intelligence, and particularly deep learning, revolutionised numerical weather prediction (NWP) in 2023. Several teams from giant tech companies have proposed surrogate models for high-resolution global atmospheric dynamics. These models achieve the performance levels of the deterministic IFS of the European Centre for Medium-Range Weather Forecasts, as well as its ensemble prediction variant. In this presentation, I will discuss the techniques used to construct these models, their scope and limitations, and illustrate the concepts with our own models and results, in NWP and sea-ice models for climate. I will also discuss the integration of such surrogate models with data assimilation for the improvement of NWP, as well as some more fundamental issues related to the end-to-end approaches to data assimilation.

Information about the video

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback