00:00:00 / 00:00:00

Artificial intelligence, data assimilation, and data-driven surrogate models for the climate

De Marc Bocquet

Apparaît dans la collection : School/Workshop: Energy, mathematics, and theoretical challenges

Artificial intelligence, and particularly deep learning, revolutionised numerical weather prediction (NWP) in 2023. Several teams from giant tech companies have proposed surrogate models for high-resolution global atmospheric dynamics. These models achieve the performance levels of the deterministic IFS of the European Centre for Medium-Range Weather Forecasts, as well as its ensemble prediction variant. In this presentation, I will discuss the techniques used to construct these models, their scope and limitations, and illustrate the concepts with our own models and results, in NWP and sea-ice models for climate. I will also discuss the integration of such surrogate models with data assimilation for the improvement of NWP, as well as some more fundamental issues related to the end-to-end approaches to data assimilation.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis