00:00:00 / 00:00:00

A Random Matrix Model for the Entanglement Entropy of Free Fermions

By Leonid Pastur

Appears in collection : Representations, Probability, and Beyond : A Journey into Anatoly Vershik’s World

Quantum entanglement, a special form of quantum correlation, is an important ingredient of modern quantum mechanics and related fields. Much of the extensive literature on entanglement considers quantum correlations between a particular subsystem (a block) and the rest of the system (environment), and uses the entanglement entropy as a quantifier of entanglement. It is assumed that the system size N is much larger than the block size L, which may also sufficiently large, i.e., heuristically, 1 ≪ L ≲ N. A widely accepted mathematical version of this inequality is the regime of successive limits: first the macroscopic limit N → ∞, and then an asymptotic analysis of the entanglement entropy for L → ∞. We consider another version of the above heuristic inequality: the regime of asymptotically proportional L and N, i.e., simultaneous limits N → ∞, L → ∞, L/N → c > 0. Specifically, we deal with a quantum system of free fermions that are in their ground state and have a large random matrix as a one-body Hamiltonian. We show that the entanglement entropy obeys the volume law known for systems having a local one-body Hamiltonian but described either by a mixed state or by a pure but highly excited state.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback