00:00:00 / 00:00:00

Appears in collection : Partial Differential Equations, Analysis and Geometry

In an effort to explain how anomalous dissipation of energy occurs in hydrodynamic turbulence, Onsager conjectured in 1949 that weak solutions to the incompressible Euler equations may fail to exhibit conservation of energy if their spatial regularity is below 1/3-Hölder. I will discuss a proof of this conjecture that shows that there are nonzero, (1/3-$\epsilon$)-Hölder Euler flows in 3D that have compact support in time.

Information about the video

  • Date of recording 13/01/2026
  • Date of publication 14/01/2026
  • Institution IHES
  • Language English
  • Audience Researchers
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback