Jean Morlet Chair - 2014 - Sem 1 - Shparlinski - Kohel

Collection Jean Morlet Chair - 2014 - Sem 1 - Shparlinski - Kohel

Organizer(s) Prof. Igor SHPARLINSKI University of New South Wales, AUS and Dr. David KOHEL I2M Marseille Aix-Marseille Université
Date(s) 01/01/2014 - 30/06/2014
linked URL https://www.chairejeanmorlet.com/2014-1-shparlinski-kohel.html
00:00:00 / 00:00:00
23 32

On the proximity of additive and multiplicative functions

By Jean-Marie de Koninck

Also appears in collection : Prime numbers : new perspectives / Nombres premiers : nouvelles perspectives

Given an additive function $f$ and a multiplicative function $g$, let $E(f,g;x)=#\left \{ n\leq x:f(n)=g(n) \right }$ We study the size of $E(f,g;x)$ for those functions $f$ and $g$ such that $f(n)\neq g(n)$ for at least one value of $n> 1$. In particular, when $f(n)=\omega (n)$ , the number of distinct prime factors of $n$ , we show that for any $\varepsilon >0$ , there exists a multiplicative function $g$ such that $E(\varepsilon ,g;x)\gg \frac{x}{\left ( \log \log x\right )^{1+\varepsilon }}$, while we prove that $E(\varepsilon ,g;x)=o(x)$ as $x\rightarrow \infty$ for every multiplicative function $g$.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18606903
  • Cite this video de Koninck, Jean-Marie (11/02/2014). On the proximity of additive and multiplicative functions. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18606903
  • URL https://dx.doi.org/10.24350/CIRM.V.18606903

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback