Interpolation in Spaces of Analytic Functions / Interpolation dans les espaces de fonctions analytiques

Collection Interpolation in Spaces of Analytic Functions / Interpolation dans les espaces de fonctions analytiques

Organizer(s) Fricain, Emmanuel ; Hartmann, Andreas ; Wick, Brett
Date(s) 18/11/2019 - 22/11/2019
linked URL https://conferences.cirm-math.fr/2055.html
00:00:00 / 00:00:00
4 5

Given a finite positive measure $\mu$ on the unit circle, we consider the distance $e_{n}\left ( \mu \right )$ from $z^{n}$ to the analytic polynomials of degree less than $n$ in $L^{2}\left ( \mu \right )$. We study the asymptotic behavior of $e_{n}\left ( \mu \right )$ for $n\rightarrow \infty$ when the logarithmic integral of the density of $\mu$ diverges for different classes of measures $\mu$.

Information about the video

Citation data

Domain(s)

Bibliography

  • BORICHEV, Alexander, KONONOVA, Anna, et SODIN, Mikhail. Notes on the Szego minimum problem. I. Measures with deep zeroes. arXiv preprint arXiv:1902.00874, 2019. - https://arxiv.org/abs/1902.00874
  • BORICHEV, Alexander, KONONOVA, Anna, et SODIN, Mikhail. Notes on the Szego minimum problem. II. Singular measures. arXiv preprint arXiv:1902.00872, 2019. - https://arxiv.org/abs/1902.00872

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback