Interpolation in Spaces of Analytic Functions / Interpolation dans les espaces de fonctions analytiques

Collection Interpolation in Spaces of Analytic Functions / Interpolation dans les espaces de fonctions analytiques

Organizer(s) Fricain, Emmanuel ; Hartmann, Andreas ; Wick, Brett
Date(s) 18/11/2019 - 22/11/2019
linked URL https://conferences.cirm-math.fr/2055.html
00:00:00 / 00:00:00
3 5

Norm-preserving extensions of bounded holomorphic functions

By John McCarthy

Let $V$ be an analytic subvariety of a domain $\Omega$ in $\mathbb{C}^{n}$. When does $V$ have the property that every bounded holomorphic function $f$ on $V$ has an extension to a bounded holomorphic function on $\Omega$ with the same norm? An obvious sufficient condition is if $V$ is a holomorphic retract of $\Omega$. We shall discuss for what domains $\Omega$ this is also necessary. This is joint work with Łukasz Kosiński.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19579403
  • Cite this video McCarthy, John (18/11/2019). Norm-preserving extensions of bounded holomorphic functions. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19579403
  • URL https://dx.doi.org/10.24350/CIRM.V.19579403

Domain(s)

Bibliography

  • KOSIŃSKI, Łukasz et MCCARTHY, John. Norm preserving extensionsof bounded holomorphic functions. Transactions of the American Mathematical Society, 2019, vol. 371, no 10, p. 7243-7257. - https://arxiv.org/abs/1704.03857

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback