Diophantine approximation and transcendence 2014 / Approximation diophantienne et transcendance 2014

Collection Diophantine approximation and transcendence 2014 / Approximation diophantienne et transcendance 2014

Organizer(s) Yann BUGEAUD (Université de Strasbourg) Michel LAURENT (Aix-Marseille Université) Umberto ZANNIER (Scuola Normale Superiore di Pisa)
Date(s) 15/09/2014 - 19/09/2014
linked URL https://www.cirm-math.fr/Archives/?EX=info_rencontre&annee=2014&id_renc=1010
00:00:00 / 00:00:00
2 4

The congruence $f(x) + g(y) + c = 0$ $(mod$ $xy)$

By Andrzej Schinzel

The assertions made by L. J. Mordell in his paper in Acta Mathematica 44(1952) are discussed. Mordell had been to a certain extent anticipated by E. Jacobsthal (1939). backward induction - congruence - equation - non-zero coefficients - polynomials

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.18587103
  • Cite this video Schinzel, Andrzej (16/09/2014). The congruence $f(x) + g(y) + c = 0$ $(mod$ $xy)$. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.18587103
  • URL https://dx.doi.org/10.24350/CIRM.V.18587103

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback