Combinatorics and Arithmetic for Physics: special days

Collection Combinatorics and Arithmetic for Physics: special days

Organizer(s) Gérard H.E. Duchamp, Maxim Kontsevich, Gleb Koshevoy et Vincel Hoang Ngoc Minh
Date(s) 11/30/21 - 12/2/21
linked URL https://indico.math.cnrs.fr/event/7040/
00:00:00 / 00:00:00
16 20

Enumeration and Generation of Young Tableaux with Walls: the Density Method

By Cyril Banderier

We consider a generalization of Young tableaux in which we allow some consecutive pairs of cells with decreasing labels, conveniently visualized by a ”wall” between the corresponding cells. This leads to new classes of recurrences, and to a surprisingly rich zoo of generating functions (algebraic, hypergeometric, D-finite, differentially-algebraic). Some patterns lead to nice bijections with trees, lattice paths, or permutations. Our approach relies on the density method, a powerful way to perform both uniform random generation and enumeration. It finds its origins in number theory (values of the zeta function, with a Kontsevich-Zagier period point of view) and in poset theory (volume of polytopes). We also apply this approach to describe the asymptotic fluctuations of the limit surface of Young tableaux.

Based on several articles with Philippe Marchal and Michael Wallner.

Information about the video

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback