Categories in homotopy theory and rewriting / Catégories pour la théorie de l'homotopie et la réécriture

Collection Categories in homotopy theory and rewriting / Catégories pour la théorie de l'homotopie et la réécriture

Organizer(s) Ara, Dimitri ; Fiore, Marcelo ; Guiraud, Yves ; Mimram, Samuel
Date(s) 25/09/2017 - 29/09/2017
linked URL http://conferences.cirm-math.fr/1773.html
00:00:00 / 00:00:00
2 5

Homotopy theory of strict $\omega$-categories and its connections with homology of monoids - Lecture 2

By François Métayer

Also appears in collection : Exposés de recherche

In the first part, we describe the canonical model structure on the category of strict $\omega$-categories and how it transfers to related subcategories. We then characterize the cofibrant objects as $\omega$-categories freely generated by polygraphs and introduce the key notion of polygraphic resolution. Finally, by considering a monoid as a particular $\omega$-category, this polygraphic point of view will lead us to an alternative definition of monoid homology, which happens to coincide with the usual one.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19223903
  • Cite this video Métayer, François (26/09/2017). Homotopy theory of strict $\omega$-categories and its connections with homology of monoids - Lecture 2. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19223903
  • URL https://dx.doi.org/10.24350/CIRM.V.19223903

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback