Bourbaki - Novembre 2016

Collection Bourbaki - Novembre 2016

Organizer(s)
Date(s) 05/11/2016 - 05/11/2016
linked URL https://www.bourbaki.fr/seminaires/2017/Prog_nov16.html
00:00:00 / 00:00:00
2 4

Un nœud est souvent représenté par un diagramme de nœud, c’est-à-dire une projection sur deux dimensions, où l’on indique à chaque croisement lequel des deux brins passe au-dessus de l’autre. Deux diagrammes représentent alors le même nœud si et seulement si ils peuvent être reliés par une série de mouvements locaux, appelés mouvements de Reidemeister. Dans cet exposé, nous présenterons un résultat de Lackenby montrant que, partant d’un diagramme à c croisements du nœud trivial, un nombre polynomial en c de tels mouvements suffit pour arriver au diagramme trivial. La preuve s’appuie sur la théorie des surfaces normales et les travaux de Dynnikov sur les présentations par arcs. En corollaire, cela fournit un algorithme (exponentiel) pour reconnaître les nœuds triviaux, et nous en profiterons pour discuter de quelques problèmes algorithmiques autour des nœuds et des entrelacs.

[D’après Lackenby]

Information about the video

Domain(s)

Bibliography

Séminaire Bourbaki, 69ème année (2016-2017), n°1121, novembre 2016 PDF

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback