Bourbaki - Juin 2023

Collection Bourbaki - Juin 2023

Organizer(s)
Date(s) 24/06/2023 - 24/06/2023
linked URL https://www.bourbaki.fr/seminaires/2023/Prog_jui-23.html
1 3

[1208] Non-unicité des solutions de Leray de l’équation de Navier-Stokes avec terme source

By Anne-Laure Dalibard

La dynamique des fluides visqueux incompressibles est décrite par les équations de Navier–Stokes, pour lesquelles on dispose principalement de deux façons de construire des solutions en dimension trois. La première, due à Leray et étendue par Hopf, repose sur une méthode de compacité, et conduit à l’existence de solutions dites solutions « faibles », globales (c’est-à-dire définies pour tout temps). La seconde, due initialement à Fujita et Kato et généralisée ensuite, consiste à construire des solutions dites « fortes » par une méthode de point fixe, dans un espace fonctionnel à forte régularité. Les solutions fortes ainsi obtenues sont naturellement uniques, mais sont a priori locales. Cette dichotomie conduit naturellement à la question suivante, restée ouverte pendant presque un siècle : les solutions de Leray–Hopf sont-elles uniques ?

Récemment, Dallas Albritton, Elia Brué et Maria Colombo ont apporté une réponse négative à cette question fondamentale, en considérant le cas d’un fluide initialement au repos et soumis à une force extérieure. Leur preuve repose sur la construction d’un profil linéairement instable dans des variables auto-similaires et s’inspire d’un résultat de Vishik pour l’équation d’Euler, ainsi que des travaux de Sverak et de ses collaborateurs.

[D'après Dallas Albritton, Elia Brué et Maria Colombo]

Information about the video

Bibliography

  • Séminaire Bourbaki, 75ème année (2022-2023), n°1208, juin 2023 PDF

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback