Applications of NonCommutative Geometry to Gauge Theories, Field Theories, and Quantum Space-Time / Applications de la Géométrie Non Commutative aux Théories de Jauge, à la Théorie des Champs et aux Espaces-Temps Quantiques

Collection Applications of NonCommutative Geometry to Gauge Theories, Field Theories, and Quantum Space-Time / Applications de la Géométrie Non Commutative aux Théories de Jauge, à la Théorie des Champs et aux Espaces-Temps Quantiques

Organizer(s) Iseppi, Roberta Anna ; Martinetti, Pierre ; Masson, Thierry ; Nieuviarts, Gaston ; Organisateurs, . ; Vitale, Patrizia
Date(s) 07/04/2025 - 11/04/2025
linked URL https://conferences.cirm-math.fr/3196.html
00:00:00 / 00:00:00
4 5

Extremal eigenvectors, the spectral action, and the zeta spectral triple

By Alain Connes

I will first explain the joint work with Walter van Suijlekom on a new result about th zeros of the Fourier transform of extremal eigenvectors for quadratic forms associated to distributions on a bounded interval and its relation with the spectral action. Then I will explain how these results allow to advance in the joint work which I am doing with Consani and Moscovici on the zeta spectral triple. Finally, if time permits, I will discuss several ideas in connection with physics and non-commutative geometry.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.20340803
  • Cite this video Connes, Alain (10/04/2025). Extremal eigenvectors, the spectral action, and the zeta spectral triple. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20340803
  • URL https://dx.doi.org/10.24350/CIRM.V.20340803

Bibliography

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback