2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Collection 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Organizer(s) Bromberg, Kenneth ; Haïssinsky, Peter ; Hamenstädt, Ursula ; Maloni, Sara ; Sambarino, Andrés ; Schapira, Barbara
Date(s) 23/06/2025 - 27/06/2025
linked URL https://indico.math.cnrs.fr/event/11570/
11 17

Geometrical finiteness in strictly convex projective geometry

By Pierre-Louis Blayac

Roughly speaking, a complete real hyperbolic manifold is geometrically finite if its convex core is the union of a compact set and finitely many ends that are isometric to ends of manifolds with elementary parabolic holonomy. This notion admits many different characterizations, and has been generalized to much broader settings such as rank-one symmetric spaces, Hadamard manifolds, or even convergence group actions.

A decade ago, Crampon and Marquis extended this notion to (strictly) convex (real) projective geometry. A domain in the real projective space is properly convex if it is contained in some affine chart, where it is bounded and convex.

Crampon--Marquis introduced two distinct notions geometrical finiteness for quotients of convex domain that are round, i.e. strictly convex with differentiable boundary. One notion is more restrictive than the other, and they proved that most of the usual characterizations of geometrical finiteness are equivalent to their strong definition. Unfortunately a mistake slipped into the proof and the situation is more complex than expected, hence more interesting.

We will review their work, evoke the link with relative Anosov groups through work of Zhu--Zimmer and Fléchelles, and see an example in $\mathrm{SL}(5,\mathbb R)$ where the finite volume characterization of geometrical finiteness fails.

Information about the video

Domain(s)

Bibliography

  • Finitude géométrique en géométrie de Hilbert (Crampon--Marquis)
  • On convex projective manifolds and cusps (Cooper--Long--Tillmann)
  • Deforming convex projective manifolds (Cooper--Long--Tillmann)
  • Relative Anosov representations via flows I & II (Zhu--Zimmer)
  • Patterson–Sullivan measures for transverse subgroups (Canary--Zhang--Zimmer)
  • Geometric finiteness in convex projective geometry (Balthazar Fléchelles, PhD thesis)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback