2019 - T1 - WS2 - Statistical Modeling for Shapes and Imaging

Collection 2019 - T1 - WS2 - Statistical Modeling for Shapes and Imaging

Organizer(s)
Date(s) 11/03/2019 - 15/03/2019
00:00:00 / 00:00:00
7 25

Sparse stochastic processes are continuous-domain processes that are specified as solutions of linear stochastic differential equations driven by white Lévy noise. These processes admit a parsimonious representation in some matched wavelet-like basis. Such models are relevant for image compression, compressed sensing, and, more generally, for the derivation of statistical algorithms for solving ill-posed inverse problems. The hybrid processes of this talk are formed by taking a sum of such elementary processes plus an optional Gaussian component. We apply this hybrid model to the derivation of image reconstruction algorithms from noisy linear measurements. In particular, we derive a hybrid MAP estimator, which is able to successfully reconstruct signals, while identifying the underlying signal components. Our scheme is compatible with classical Tikhonov and total-variation regularization, which are both recovered as limit cases. We present an efficient ADMM implementation and illustrate the advantages of the hybrid model with concrete examples.

Information about the video

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback