00:00:00 / 00:00:00

Topological Invariants of Gapped States and ’t Hooft Anomalies

De Anton Kapustin Kapustin

Apparaît dans la collection : Physical Mathematics : Celebration of Albert Schwarz’s 70 Years in Science

Recently, an approach to constructing topological invariants of gapped ground-states of lattice systems has been developed in our joint work with N. Sopenko. It applies to arbitrary gapped states of infinite-volume lattice spin systems with rapidly decaying interactions and employs C*-algebraic techniques. In this talk I will explain an interpretation of these invariants as obstructions to gauging, i.e. to promoting a symmetry to a local symmetry. The key observation is that locality on a lattice is an asymptotic notion sensitive only to the large-scale geometry of the support set. Following Kashiwara and Schapira, one can encode locality using a natural Grothendieck topology on a category of semilinear subsets of Eucludean space. Infinitesimal symmetries of a gapped state form a cosheaf over the corresponding site, and the topological invariants are encoded in its Cech complex.

Informations sur la vidéo

  • Date de captation 14/06/2024
  • Date de publication 15/06/2024
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis