00:00:00 / 00:00:00

$p$-adic Motives and Special Values of Zeta Functions

De Shubhodip Mondal

Apparaît dans la collection : New Structures and Techniques in $p$-adic Geometry

In 1966, Tate proposed the Artin–Tate conjectures, which describe the special values of zeta functions associated to surfaces over finite fields. Building on this, and assuming the Tate conjecture, Milne and Ramachandran formulated and proved analogous conjectures for smooth proper schemes over finite fields. However, the formulation of these conjectures already relied on other unproven conjectures. In this talk, I will present an unconditional formulation and proof of these conjectures. The approach relies on the theory of $F$-Gauges, a notion introduced by Fontaine–Jannsen and further developed by Bhatt–Lurie and Drinfeld, which has been proposed as a candidate for a theory of $p$-adic motives. A central role is also played by the notion of stable Bockstein characteristics, which will be introduced in the talk.

Informations sur la vidéo

  • Date de captation 31/10/2025
  • Date de publication 05/11/2025
  • Institut IHES
  • Langue Anglais
  • Audience Chercheurs
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis