00:00:00 / 00:00:00

Numerical methods for SDEs with additive noise and distributional drift: strong and weak error rates

De Elena Issoglio

Apparaît dans la collection : New trends of stochastic nonlinear systems: well-posedeness, dynamics and numerics / Nouvelles tendances en analyse non linéaire stochastique: caractère bien posé, dynamique et aspects numériques

I will provide a general overview on some recent results on strong and weak error rates for Euler-type schemes for SDEs with distributional drift. In particular, the classes of drift considered include elements of negative fractional Sobolev spaces or negative Besov spaces with regularity index in (-1/2, 0). After reviewing various notions of solution for this class of SDEs, we delve into the numerics. Firstly we present a two-step Euler-type scheme that has been applied to different settings (additive Brownian noise, additive fractional Brownian noise). We derive bounds for the strong error, both in the SDE case (linear) and in the McKean equation case (nonlinear). Secondly we present a different Euler-type scheme that has been used for the case of alpha-stable additive noise and derive bounds for the error of the densities (linked to the weak error) in the linear case. Finally, time permitting, we will show some numerical results.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20396403
  • Citer cette vidéo Issoglio, Elena (21/10/2025). Numerical methods for SDEs with additive noise and distributional drift: strong and weak error rates. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20396403
  • URL https://dx.doi.org/10.24350/CIRM.V.20396403

Domaine(s)

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis