00:00:00 / 00:00:00

Apparaît dans la collection : Geometric Sciences in Action: from geometric statistics to shape analysis / Les sciences géometriques en action: des statistiques géometriques à l'analyse de forme

In computational anatomy and, more generally, shape analysis, the Large Deformation Diffeomorphic Metric Mapping framework models shape variations as diffeomorphic deformations. An important shape space within this framework is the space consisting of shapes characterised by $n \geq 2$ distinct landmark points in $\mathbb{R}^d$. In diffeomorphic landmark matching, two landmark configurations are compared by solving an optimization problem which minimizes a suitable energy functional associated with flows of compactly supported diffeomorphisms transforming one landmark configuration into the other one. The landmark manifold $Q$ of $n$ distinct landmark points in $\mathbb{R}^d$ can be endowed with a Riemannian metric $g$ such that the above optimization problem is equivalent to the geodesic boundary value problem for $g$ on $Q$. Despite its importance for modeling stochastic shape evolutions, no general result concerning long-time existence of Brownian motion on the Riemannian manifold $(Q, g)$ is known. I will present joint work with Philipp Harms and Stefan Sommer on first progress in this direction which provides a full characterization of long-time existence of Brownian motion for configurations of exactly two landmarks, governed by a radial kernel.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20185103
  • Citer cette vidéo Habermann, Karen (27/05/2024). Long-time existence of Brownian motion on configurations of two landmarks. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20185103
  • URL https://dx.doi.org/10.24350/CIRM.V.20185103

Bibliographie

  • HABERMANN, Karen, HARMS, Philipp, et SOMMER, Stefan. Long‐time existence of Brownian motion on configurations of two landmarks. Bulletin of the London Mathematical Society, 2024, vol. 56, no 5, p. 1658-1679. - https://doi.org/10.1112/blms.13018

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis