00:00:00 / 00:00:00

Frieze patterns from a geometric point of view: projective geometry and difference equations

De Valentin Ovsienko

Apparaît dans la collection : Frieze patterns in algebra, combinatorics and geometry / Frises en algèbre, combinatoire et géométrie

The goal of this short course is to explain the concept of “triality”, which is an isomorphism between a large class of of (generalized) tame frieze patterns, certain spaces of linear difference equations, and the moduli space of configurations of points in the projective space. This approach will be used in several directions, in particular: • to define “good” coordinates on moduli spaces related to cluster algebras and symplectic geometry • to find simple proofs of some properties of friezes, such as periodicity • to connect the subject to dynamical systems • to create new types of friezes • to count friezes of certain types. The presentation is based on several joint papers with Sophie Morier-Genoud, Sergei Tabachnikov, and also Charles Conley, and Richard Schwartz. Coxeter friezes and geometry of the projective line. I will start with the classical Coxeter's frieze patterns and connect them to configurations of point in the 1-dimensional projective space P1. As a consequence, a (pre)symplectic structure on the space of Coxeter's friezes will be described. The basic notions of projective geometry, such as the cross-ratio and Schwarzian derivative will be recalled/explained and used.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20346303
  • Citer cette vidéo Ovsienko, Valentin (12/05/2025). Frieze patterns from a geometric point of view: projective geometry and difference equations. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20346303
  • URL https://dx.doi.org/10.24350/CIRM.V.20346303

Domaine(s)

Bibliographie

  • MORIER-GENOUD, Sophie, OVSIENKO, Valentin, SCHWARTZ, Richard Evan, et al. Linear difference equations, frieze patterns, and the combinatorial Gale transform. In : Forum of Mathematics, Sigma. Cambridge University Press, 2014. p. e22. - https://doi.org/10.1017/fms.2014.20
  • MORIER-GENOUD, Sophie, OVSIENKO, Valentin, et TABACHNIKOV, Serge. 2-frieze patterns and the cluster structure of the space of polygons. In : Annales de l'Institut Fourier. 2012. p. 937-987. - https://doi.org/10.5802/aif.2713
  • MORIER-GENOUD, Sophie, OVSIENKO, Valentin, et TABACHNIKOV, Serge. Introducing supersymmetric frieze patterns and linear difference operators. Mathematische Zeitschrift, 2015, vol. 281, p. 1061-1087. - https://doi.org/10.1007/s00209-015-1520-x
  • CONLEY, Charles H. et OVSIENKO, Valentin. Quiddities of polygon dissections and the Conway-Coxeter frieze equation. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 24 (2023), no. 4, 2125–2170 - https://doi.org/10.2422/2036-2145.202109_025

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis