00:00:00 / 00:00:00

A minicourse on permutation flows

De Martha Yip

Apparaît dans la collection : Beyond Permutahedra and Associahedra / Au-dela du Permutoèdre et de l'associaèdre

Danilov, Karzanov and Koshevoy devised a combinatorial method to obtain regular unimodular triangulations of flow polytopes on acyclic directed graphs having a unique source and sink and with unit netflow. It was conjectured by González D'León et al. that the dual graph of a DKK triangulation has the structure of a lattice. Recently, proofs of the conjecture were announced independently by Bell and Ceballos, and by Berggren and Serhiyenko. We give another combinatorial approach towards the study of these lattices. I will discuss the combinatorics behind permutation flows and use them to obtain a formula for the h²-polynomial of the flow polytope (ie. a G-Eulerian polynomial). We then extend the concept of DKK triangulations to flow polytopes with nonnegative integer netflows and obtain a new proof of the generalized Lidskii formula for the volume of a flow polytope.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20413703
  • Citer cette vidéo Yip, Martha (04/12/2025). A minicourse on permutation flows. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20413703
  • URL https://dx.doi.org/10.24350/CIRM.V.20413703

Domaine(s)

Bibliographie

  • D'LEÓN, Rafael S. González, HANUSA, Christopher RH, et YIP, Martha. Permutation Flows I: Triangulations of Flow Polytopes (Research Announcement). arXiv preprint arXiv:2512.04078, 2025. - https://doi.org/10.48550/arXiv.2512.04078

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis