00:00:00 / 00:00:00

Lattice congruences for combinatorialists

De Nathan Reading

Apparaît dans la collection : Beyond Permutahedra and Associahedra / Au-dela du Permutoèdre et de l'associaèdre

We will begin with the basic facts about congruences on finite lattices that every combinatorialist should see, emphasizing the ideas most relevant to the weak order on a finite Coxeter group (and also to the framing lattices that will appear in Martha Yip's lectures).  We apply these facts to the weak order, motivated by examples, and develop the combinatorics of congruences/quotients, in general and in specific.  If time allows, we will place the lattice theory in the geometric setting of hyperplane arrangements, posets of regions, and shards.

Informations sur la vidéo

Données de citation

  • DOI 10.24350/CIRM.V.20413403
  • Citer cette vidéo Reading, Nathan (01/12/2025). Lattice congruences for combinatorialists. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.20413403
  • URL https://dx.doi.org/10.24350/CIRM.V.20413403

Domaine(s)

Bibliographie

  • READING, Nathan. Cambrian lattices. Advances in Mathematics, 2006, vol. 205, no 2, p. 313-353. - https://doi.org/10.1016/j.aim.2005.07.010
  • READING, Nathan. From the Tamari lattice to Cambrian lattices and beyond. In : Associahedra, Tamari Lattices and Related Structures: Tamari Memorial Festschrift. Basel : Springer Basel, 2012. p. 293-322. - https://doi.org/10.1007/978-3-0348-0405-9_15
  • READING, Nathan. Noncrossing arc diagrams and canonical join representations. SIAM Journal on Discrete Mathematics, 2015, vol. 29, no 2, p. 736-750. - https://doi.org/10.1137/140972391
  • READING, Nathan. Lattice theory of the poset of regions. In : Lattice Theory: Special Topics and Applications: Volume 2. Cham : Springer International Publishing, 2016. p. 399-487. - https://doi.org/10.1007/978-3-319-44236-5_9
  • READING, Nathan. Finite Coxeter groups and the weak order. In : Lattice Theory: Special Topics and Applications: Volume 2. Cham : Springer International Publishing, 2016. p. 489-561. - https://doi.org/10.1007/978-3-319-44236-5_10

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis