Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Collection Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Organisateur(s)
Date(s) 10/12/2024
00:00:00 / 00:00:00
12 13

Statistics of randomized Laplace eigenfunctions

De Yaiza Canzani Garcia

There are several questions about the behavior of Laplace eigenfunctions that are extremely hard to tackle and hence remain unsolved. Among the features that we don’t fully understand yet are: the number of critical points, the size of the zero set, the number of components of the zero set, and the topology of such components. A natural approach is then to randomize the problem and study these features for a randomized version of the eigenfunctions. In this talk I will present several results that tackle the problems described above for random linear combinations of eigenfunctions (with Gaussian coefficients) on a compact Riemannian manifold. This talk is based on joint works with Boris Hanin and Peter Sarnak.

Informations sur la vidéo

  • Date de captation 09/12/2017
  • Date de publication 27/12/2017
  • Institut IHES
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis