Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Collection Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Organisateur(s)
Date(s) 10/12/2024
00:00:00 / 00:00:00
5 13

Ricci flow, diffeomorphism groups, and the Generalized Smale Conjecture

De Bruce Kleiner

The Smale Conjecture (1961) may be stated in any of the following equivalent forms: • The space of embedded 2-spheres in R3 is contractible. • The inclusion of the orthogonal group O(4) into the group of diffeomorphisms of the 3-sphere is a homotopy equivalence. • The space of all Riemannian metrics on S3 with constant sectional curvature is contractible. While the analogous statement one dimension lower can be proven in many ways -for instance using the Riemann mapping theorem -Smale's conjecture turned out to be surprisingly difficult, and remained open until 1983, when it was proven by Hatcher using a deep combinatorial argument. Smale's Conjecture has a natural generalization to other spherical space forms: if M is a spherical space form with a Riemannian metric of constant sectional curvature, then the inclusion of the isometry group into the diffeomorphism group is a homotopy equivalence. The lecture will explain how Ricci flow through singularites, as developed in the last few years by John Lott, Richard Bamler, and myself, can be used to address this conjecture. This is joint work with Richard Bamler.

Informations sur la vidéo

  • Date de captation 07/12/2017
  • Date de publication 27/12/2017
  • Institut IHES
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis