Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Collection Riemannian Geometry Past, Present and Future: an homage to Marcel Berger

Organisateur(s)
Date(s) 10/12/2024
00:00:00 / 00:00:00
11 13

Optimal regularity for geometric flows

De Tobias Colding

Many physical phenomema lead to tracking moving fronts whose speed depends on the curvature. The level set method has been tremendously succesful for this, but the solutions are typically only continuous. We will discuss results that show that the level set flow has twice differentiable solutions. This is optimal. These analytical questions crucially rely on understanding the underlying geometry. The proofs draws inspiration from real algebraic geometry and the theory of analytical functions. Further developing these geometric techniques gives solutions to other analytical questions like Rene Thom's gradient conjecture for degenerate equations. We believe these results are the first instances of a general principle: Solutions of many degenerate equations should behave as if they are analytic, even when they are not. If so, this would explain various conjectured phenomena. Finally, the techniques should have applications to other geometric flows. If time permits, then we will discuss results about this. This is joint work with Bill Minicozzi.

Informations sur la vidéo

  • Date de captation 08/12/2017
  • Date de publication 27/12/2017
  • Institut IHES
  • Licence CC BY-NC-ND
  • Format MP4

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis