Traveling waves for a family of Szegö equations
About fifteen years ago, Patrick Gérard and I introduced the cubic Szegö equation$$\begin{aligned}i \partial_{t} u & =\Pi\left(|u|^{2} u\right), \quad u=u(x, t), \quad x \in \mathbb{T}, t \in \mathbb{R} \u(x, 0) & =u_{0}(x) .\end{aligned}$$Here $\Pi$ denotes the Szegö projector which maps $L^{2}(\mathbb{T})$-functions into the Hardy space of $L^{2}(\mathbb{T})$-traces of holomorphic functions in the unit disc. It turned out that the dynamics of this equation were unexpected. This motivated us to try to understand whether the cubic Szegö equation is an isolated phenomenon or not. This talk is part of this project. We consider a family of perturbations of the cubic Szegö equation and look for their traveling waves. Let us recall that traveling waves are particular solutions of the form$$u(x, t)=\mathrm{e}^{-i \omega t} u_{0}\left(\mathrm{e}^{-i c t} x\right), \quad \omega, c \in \mathbb{R}$$We will explain how the spectral analysis of some operators allows to characterize them. From joint works with Patrick Gérard.