2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Collection 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Organisateur(s) Bromberg, Kenneth ; Haïssinsky, Peter ; Hamenstädt, Ursula ; Maloni, Sara ; Sambarino, Andrés ; Schapira, Barbara
Date(s) 23/06/2025 - 27/06/2025
URL associée https://indico.math.cnrs.fr/event/11570/
4 17

Geometry of hyperconvex representations of surface groups

De Gabriele Viaggi

A quasi-Fuchsian representation of a surface group in $\mathrm{PSL}(2,\mathbb C)$ is a discrete and faithful representation that preserves a Jordan curve on the Riemann sphere. These classical objects have a very rich structure as they lie at the crossroad of several areas of mathematics such as complex dynamics, Teichmüller theory, and 3-dimensional hyperbolic geometry. The invariant Jordan curve, which is typically a very fractal circle, captures the complexity of the representation and key dynamical and geometric features. In groundbreaking work, Bowen showed that the Hausdorff dimension of such a curve is always strictly greater than 1 except when it is a round circle and the representation factors through a copy of $\mathrm{PSL}(2,\mathbb R)$. In this talk, I will describe how this phenomenon persists for hyperconvex representations of surface groups in $\mathrm{PSL}(2,\mathbb C)$ a much larger class of representations that shares many striking similarities with quasi-Fuchsian ones. This is joint work with Beatrice Pozzetti and James Farre.

Informations sur la vidéo

Données de citation

  • DOI 10.57987/IHP.2025.T2.WS2.004
  • Citer cette vidéo Viaggi, Gabriele (23/06/2025). Geometry of hyperconvex representations of surface groups. IHP. Audiovisual resource. DOI: 10.57987/IHP.2025.T2.WS2.004
  • URL https://dx.doi.org/10.57987/IHP.2025.T2.WS2.004

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis