2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Collection 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Organisateur(s) Bromberg, Kenneth ; Haïssinsky, Peter ; Hamenstädt, Ursula ; Maloni, Sara ; Sambarino, Andrés ; Schapira, Barbara
Date(s) 23/06/2025 - 27/06/2025
URL associée https://indico.math.cnrs.fr/event/11570/
4 17

Geometry of hyperconvex representations of surface groups

De Gabriele Viaggi

A quasi-Fuchsian representation of a surface group in $\mathrm{PSL}(2,\mathbb C)$ is a discrete and faithful representation that preserves a Jordan curve on the Riemann sphere. These classical objects have a very rich structure as they lie at the crossroad of several areas of mathematics such as complex dynamics, Teichmüller theory, and 3-dimensional hyperbolic geometry. The invariant Jordan curve, which is typically a very fractal circle, captures the complexity of the representation and key dynamical and geometric features. In groundbreaking work, Bowen showed that the Hausdorff dimension of such a curve is always strictly greater than 1 except when it is a round circle and the representation factors through a copy of $\mathrm{PSL}(2,\mathbb R)$. In this talk, I will describe how this phenomenon persists for hyperconvex representations of surface groups in $\mathrm{PSL}(2,\mathbb C)$ a much larger class of representations that shares many striking similarities with quasi-Fuchsian ones. This is joint work with Beatrice Pozzetti and James Farre.

Informations sur la vidéo

Bibliographie

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis