2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Collection 2025 - T2 - WS2 - Low-dimensional phenomena: geometry and dynamics

Organisateur(s) Bromberg, Kenneth ; Haïssinsky, Peter ; Hamenstädt, Ursula ; Maloni, Sara ; Sambarino, Andrés ; Schapira, Barbara
Date(s) 23/06/2025 - 27/06/2025
URL associée https://indico.math.cnrs.fr/event/11570/
6 17

Hyperbolic and relatively hyperbolic groups with 2-sphere boundary

De Genevieve Walsh

We define a "drilling" of a hyperbolic group along a maximal infinite cyclic subgroup, which results in a relatively hyperbolic group pair. This procedure is inspired by drilling a hyperbolic 3-manifold along an embedded geodesic. We show that, under suitable circumstances, drilling a hyperbolic group with 2-sphere hyperbolic boundary results in a relatively hyperbolic group with 2-sphere relatively hyperbolic boundary. This is joint work with D. Groves, P. Haissinsky, D. Osajda, and A. Sisto. If time permits, I will discuss a somewhat related result with E. Stark which implies that a hyperbolic space which admits a geometric action and admits a relatively hyperbolic action with rank 2 abelian peripheral subgroups is quasi-isometric to $\mathbb H^3$.

Informations sur la vidéo

Dernières questions liées sur MathOverflow

Pour poser une question, votre compte Carmin.tv doit être connecté à mathoverflow

Poser une question sur MathOverflow




Inscrivez-vous

  • Mettez des vidéos en favori
  • Ajoutez des vidéos à regarder plus tard &
    conservez votre historique de consultation
  • Commentez avec la communauté
    scientifique
  • Recevez des notifications de mise à jour
    de vos sujets favoris
Donner son avis