00:00:00 / 00:00:00

Unique equilibrium states for geodesic flows over manifolds without focal-points

By Lien-Yung Kao

Appears in collection : Jean-Morlet Chair 2019 - Research School: Thermodynamic Formalism: Modern Techniques in Smooth Ergodic Theory / Chaire Jean-Morlet 2019 - Ecole : Formalisme thermodynamique : techniques modernes en théorie ergodique

We study dynamics of geodesic flows over closed surfaces of genus greater than or equal to 2 without focal points. Especially, we prove that there is a large class of potentials having unique equilibrium states, including scalar multiples of the geometric potential, provided the scalar is less than 1. Moreover, we discuss ergodic properties of these unique equilibrium states. We show these unique equilibrium states are Bernoulli, and weighted regular periodic orbits are equidistributed relative to these unique equilibrium states.

Information about the video

Citation data

  • DOI 10.24350/CIRM.V.19541703
  • Cite this video Kao, Lien-Yung (01/07/2019). Unique equilibrium states for geodesic flows over manifolds without focal-points. CIRM. Audiovisual resource. DOI: 10.24350/CIRM.V.19541703
  • URL https://dx.doi.org/10.24350/CIRM.V.19541703

Bibliography

  • CHEN, Dong, KAO, Lien-Yung, et PARK, Kiho. Unique equilibrium states for geodesic flows over surfaces without focal points. arXiv preprint arXiv:1808.00663, 2018. - https://arxiv.org/abs/1808.00663
  • BURNS, Keith, CLIMENHAGA, Vaughn, FISHER, Todd, et al. Unique equilibrium states for geodesic flows in nonpositive curvature. Geometric and Functional Analysis, 2018, vol. 28, no 5, p. 1209-1259. - http://dx.doi.org/10.1007/s00039-018-0465-8
  • BURNS, Keith et GELFERT, Katrin. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete & Continuous Dynamical Systems-A, 2014, vol. 34, no 5, p. 1841-1872. - http://dx.doi.org/10.3934/dcds.2014.34.1841
  • BOWEN, Rufus. Some systems with unique equilibrium states. Theory of computing systems, 1974, vol. 8, no 3, p. 193-202. - http://dx.doi.org/10.1007/BF01762666
  • BURNS, Keith. Hyperbolic behaviour of geodesic flows on manifolds with no focal points. Ergodic Theory and Dynamical Systems, 1983, vol. 3, no 1, p. 1-12. - https://doi.org/10.1017/S0143385700001796
  • CLIMENHAGA, Vaughn, FISHER, Todd, et THOMPSON, Daniel J. Unique equilibrium states for Bonatti–Viana diffeomorphisms. Nonlinearity, 2018, vol. 31, no 6, p. 2532. - https://doi.org/10.1088/1361-6544/aab1cd
  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Intrinsic ergodicity beyond specification: β-shifts, S-gap shifts, and their factors. Israel Journal of Mathematics, 2012, vol. 192, no 2, p. 785-817. - http://dx.doi.org/10.1007/s11856-012-0052-x
  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Equilibrium states beyond specification and the Bowen property. Journal of the London Mathematical Society, 2013, vol. 87, no 2, p. 401-427. - https://doi.org/10.1112/jlms/jds054
  • CLIMENHAGA, Vaughn et THOMPSON, Daniel J. Unique equilibrium states for flows and homeomorphisms with non-uniform structure. Advances in Mathematics, 2016, vol. 303, p. 745-799. - https://doi.org/10.1016/j.aim.2016.07.029
  • P DO CARMO, Manfredo, Riemannian Geometry, Birkhäuser, 2013
  • EBERLEIN, Patrick, et al. When is a geodesic flow of Anosov type? I. Journal of Differential Geometry, 1973, vol. 8, no 3, p. 437-463. - http://dx.doi.org/10.4310/jdg/1214431801
  • ESCHENBURG, Jost-Hinrich. Horospheres and the stable part of the geodesic flow. Mathematische Zeitschrift, 1977, vol. 153, no 3, p. 237-251. - http://dx.doi.org/10.1007/BF01214477
  • FRANCO, Ernesto. Flows with unique equilibrium states. American Journal of Mathematics, 1977, vol. 99, no 3, p. 486-514. - http://dx.doi.org/10.2307/2373927
  • GERBER, Marlies. On the existence of focal points near closed geodesics on surfaces. Geometriae Dedicata, 2003, vol. 98, no 1, p. 123-160. - http://dx.doi.org/10.1023/A:1024085309422
  • GELFERT, Katrin et RUGGIERO, Rafael O. Geodesic flows modelled by expansive flows. Proceedings of the Edinburgh Mathematical Society, 2019, vol. 62, no 1, p. 61-95. - https://doi.org/10.1017/S0013091518000160
  • GELFERT, Katrin et SCHAPIRA, Barbara. Pressures for geodesic flows of rank one manifolds. Nonlinearity, 2014, vol. 27, no 7, p. 1575. - https://doi.org/10.1088/0951-7715/27/7/1575
  • GULLIVER, Robert. On the variety of manifolds without conjugate points. Transactions of the American Mathematical Society, 1975, vol. 210, p. 185-201. - http://dx.doi.org/10.1090/S0002-9947-1975-0383294-0
  • HOPF, Eberhard. Closed surfaces without conjugate points. Proceedings of the National Academy of Sciences of the United States of America, 1948, vol. 34, no 2, p. 47. - https://dx.doi.org/10.1073%2Fpnas.34.2.47
  • HURLEY, Donal. Ergodicity of the geodesic flow on rank one manifolds without focal points. In : Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences. Royal Irish Academy, 1986. p. 19-30. - https://www.jstor.org/stable/20489231
  • KNIEPER, Gerhard. The uniqueness of the measure of maximal entropy for geodesic flows on rank 1 manifolds. Annals of mathematics, 1998, p. 291-314. - http://dx.doi.org/10.2307/120995
  • LEDRAPPIER, François, LIMA, Yuri, et SARIG, Omri. Ergodic properties of equilibrium measures for smooth three dimensional flows. arXiv preprint arXiv:1504.00048, 2015. - https://arxiv.org/abs/1504.00048
  • LIMA, Yuri et SARIG, Omri. Symbolic dynamics for three dimensional flows with positive topological entropy. arXiv preprint arXiv:1408.3427, 2014. - https://arxiv.org/abs/1408.3427
  • LIU, Fei et WANG, Fang. Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points. Acta Mathematica Sinica, English Series, 2016, vol. 32, no 4, p. 507-520. - http://dx.doi.org/10.1007/s10114-016-5200-5
  • O'SULLIVAN, John J., et al. Riemannian manifolds without focal points. Journal of Differential Geometry, 1976, vol. 11, no 3, p. 321-333. - http://dx.doi.org/10.4310/jdg/1214433590
  • PESIN, Ja B. Geodesic flows on closed Riemannian manifolds without focal points. Mathematics of the USSR-Izvestiya, 1977, vol. 11, no 6, p. 1195. - https://doi.org/10.1070/IM1977v011n06ABEH001766
  • POLLICOTT, Mark. Closed geodesic distribution for manifolds of non-positive curvature. Discrete & Continuous Dynamical Systems-A, 1996, vol. 2, no 2, p. 153-161. - http://dx.doi.org/10.3934/dcds.1996.2.153
  • PARRY, William et POLLICOTT, Mark. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque, 1990, vol. 187, no 188, p. 1-268. - http://www.numdam.org/item?id=AST_1990__187-188__1_0
  • WALTERS, Peter. An introduction to ergodic theory. Springer Science & Business Media, 2000.
  • WALTERS, Peter. Differentiability properties of the pressure of a continuous transformation on a compact metric space. Journal of the London Mathematical Society, 1992, vol. 2, no 3, p. 471-481. - https://doi.org/10.1112/jlms/s2-46.3.471

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback