

Lecture 3: What is the Universal Scaling Limit of Random Interface Growth, and What Does It Tell Us?
By Ivan Corwin


Coulomb gas approach to conformal field theory and lattice models of 2D statistical physics
By Stanislav Smirnov
Appears in collection : Les probabilités de demain 2016
Dans la théorie des chemins rugueux, l’aire de Lévy joue un rôle important non seulement en tant que composante du mouvement brownien, mais aussi dans l’étude de la convergence des solutions des EDS, et c’est là où l’absence ou la présence d’un drift à la limite est cruciale. Le but de cet exposé est de construire explicitement une aire de Lévy avec drift comme limite renormalisée d’une chaîne de Markov sur un graphe périodique, d’en donner quelques propriétés et d’illustrer le tout par quelques exemples de modèles issus de la physique quantique.