Unbalanced Optimal Transport across Metric Measured Spaces

By Gabriel Peyré

Appears in collection : 2022 - T3 - WS3 - Measure-theoretic Approaches and Optimal Transportation in Statistics

Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by several issues, and in particular:

(i) the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension,

(ii) sensitivity to outliers, since it prevents mass creation and destruction during the transport,

(iii) impossibility to transport between two disjoint spaces. In this talk, I will review several recent proposals to address these issues, and showcase how they work hand-in-hand to provide a comprehensive machine learning pipeline.

The three key ingredients are:

(i) entropic regularization which defines computationally efficient loss functions in high dimensions,

(ii) unbalanced OT, which relaxes the mass conservation to make OT robust to missing data and outliers,

(iii) the Gromov-Wasserstein formulation, introduced by Sturm and Memoli, which is a non-convex quadratic optimization problem defining transport between disjoint spaces.

Information about the video

Citation data

  • DOI 10.57987/IHP.2022.T3.WS3.007
  • Cite this video Peyré Gabriel (11/22/22). Unbalanced Optimal Transport across Metric Measured Spaces. IHP. Audiovisual resource. DOI: 10.57987/IHP.2022.T3.WS3.007
  • URL https://dx.doi.org/10.57987/IHP.2022.T3.WS3.007


  • T. Séjourné, F-X. Vialard, G. Peyré / The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation. In Proc. NeurIPS'21, 2021
  • Gabriel Peyré, Marco Cuturi / Computational Optimal Transport. arXiv:1803.00567

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow


  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
  • Get notification updates
    for your favorite subjects
Give feedback