00:00:00 / 00:00:00

Appears in collection : Nexus Trimester - 2016 - Distributed Computation and Communication Theme

We study communication cost of computing functions when inputs are distributed among k processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Our results show the effect of topology of the network on the total communication cost. We prove tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. On the other hand, we show that for a large class of natural functions like Set-Disjointness the communication cost is essentially n times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like ED of XOR and XOR of ED, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some tools like metric embeddings and linear programming whose use in the context of communication complexity is novel as far as we know.

Information about the video

  • Date of recording 11/02/2016
  • Date of publication 14/04/2016
  • Institution IHP
  • Format MP4

Domain(s)

Last related questions on MathOverflow

You have to connect your Carmin.tv account with mathoverflow to add question

Ask a question on MathOverflow




Register

  • Bookmark videos
  • Add videos to see later &
    keep your browsing history
  • Comment with the scientific
    community
  • Get notification updates
    for your favorite subjects
Give feedback